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1 Introduction

In matrix models of superstring theories [1, 2], space and possibly also time are described

by matrices, which are non-commutative from an outset. This matches well with the idea

of non-commutative (NC) geometry [3, 4], which has been discussed for many years as

possible effects of quantum gravity [5]. The connection became more concrete since field

theories on a NC geometry were shown to appear naturally from matrix models [6, 7] and

from string theories [8].1 Dynamical properties of such NC field theories are therefore

expected to play an important role in understanding fundamental nature of our real world.

In this paper, we demonstrate a striking effect of NC geometry on topological properties

of gauge theory. We perform Monte Carlo simulations of 2d U(1) gauge theory with various

boundary conditions using a new finite-matrix formulation proposed recently [10]. The

gauge field configurations are classified into topological sectors by the topological charge

or the index of the Dirac operator. We find that a single topological sector dictated by

the boundary condition dominates in the continuum limit. This is in sharp contrast to

the results in commutative space-time based on lattice gauge theory [11, 12]. There, the

distribution of the topological charge is gaussian with a finite extent. This means, in

particular, that all topological sectors appear from a theory with a specific (e.g., periodic)

boundary condition. Moreover, the width of the distribution diverges as the physical

volume is increased, meaning that every topological sector appears with an equal weight

in the thermodynamic limit.

We may interpret this striking difference as a kind of smoothing effects of NC geometry.

Note that in both commutative and NC space-times, a regular configuration, which can

be made smooth by an appropriate gauge transformation, has a specific topological charge

fixed by the boundary condition. In commutative space-time, one can construct non-regular

configurations without increasing the action considerably. This makes it possible to obtain

a configuration in different topological sectors rather easily. In NC space-time, on the

1Recently the idea of emergent gravity is studied intensively [9] as another connection between quantum

gravity and NC geometry.
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other hand, such non-regular configurations increase the action significantly since the star-

product contains all higher derivative terms. We confirm this point of view by calculating

the average action for each topological sector. Indeed we observe that the average action

is smaller in the specific topological sector than in the other sectors.

Thus, in NC gauge theory, one topological sector is singled out depending on the bound-

ary condition. This may be important in the context of string theory compactifications, in

which the topological properties in the extra dimensions determine, for instance, the num-

ber of generations. If the space-time in the extra dimensions are actually non-commutative

(See refs. [13, 14] for discussions on models, in which extra dimensions appear as a fuzzy

sphere.), our results suggest a mechanism for singling out a particular number of genera-

tions etc.. We also discuss possible implications on problems related to topological aspects

of field theory such as the baryon number asymmetry and the strong CP problem.

The rest of this paper is organized as follows. In section 2 we briefly review the finite-

matrix formulation of gauge theories on a NC torus, which has been generalized recently to

allow for twisted boundary conditions. In section 3 we present our Monte Carlo results for

the distribution of topological sectors. Section 4 is devoted to a summary and discussions.

2 Brief review of the finite-matrix formulation

In this section we briefly review the finite-matrix formulation of gauge theories on a NC

torus with twisted boundary conditions [10]. This is a generalization of the previous for-

mulation for periodic boundary conditions [15]. The crucial point was to characterize

the configuration space algebraically. As a simple example, we consider 2d U(p) NC gauge

theory with twisted boundary conditions, which correspond to introducing a constant back-

ground flux specified by the integer q. (We use the notations in ref. [10] except for switching

the sign of the integer q, and hence the sign of q̃ defined in (2.5), to make some important

formulae in this paper look nicer.)

For a gauge-singlet field, the boundary conditions reduce to the periodic ones, and

the configuration space is given by the representation space of the coordinate operators

Ẑµ = e2πix̂µ/L and the shift operators Γ̂µ = eǫ∂̂µ , which satisfy the algebra

ẐµẐν = e−2πiΘµν Ẑν Ẑµ , (2.1)

Γ̂µẐνΓ̂
†
µ = e

2πi
N

δµν Ẑν , (2.2)

Γ̂µΓ̂ν = e−iǫ2cµν Γ̂νΓ̂µ . (2.3)

Here Θµν and cµν represent non-commutativity, and ǫ serves as the lattice spacing with

L = ǫN (2.4)

being the size of the torus.

For an adjoint field such as the gauge field, the theory with twisted boundary conditions

can be mapped through the so-called Morita equivalence to a U(p0) NC gauge theory with

periodic boundary conditions on a dual torus, where p0 is the greatest common divisor of
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p and q. For later convenience, let us introduce co-prime integers p̃ and q̃ by

p = p0 p̃ , q = p0 q̃ , (2.5)

and another set of integers a and b by the Diophantine equation

ap̃ − bq̃ = 1 . (2.6)

The covariant derivative operator D̂
(0)
µ for the constant-curvature background field on the

original torus is mapped to the derivative operator ∂̂′
µ = D̂

(0)
µ on the dual torus. Denoting

the coordinate operators and the shift operators on the dual torus by Ẑ ′
µ and Γ̂′

µ ≡ eǫ∂̂′

µ =

eǫD̂
(0)
µ , we obtain the algebra

Ẑ ′
µ Ẑ ′

ν = e−2πi Θ′

µν Ẑ ′
ν Ẑ ′

µ , (2.7)

Γ̂′
µẐ ′

νΓ̂
′†
µ = e

2πi
n

δµν Ẑ ′
ν , (2.8)

Γ̂′
µΓ̂′

ν = e−iǫ2(cµν+fµν)Γ̂′
νΓ̂

′
µ , (2.9)

where Θ′
µν represents the non-commutativity tensor of the dual torus and fµν is the constant

background flux specified by the integer q as

f12 =
−2πq

L2(p + Θq)
. (2.10)

The non-commutativity tensors are written as Θµν = Θεµν and Θ′
µν = Θ′εµν for the

original and dual tori, respectively, where εµν is the anti-symmetric tensor with ε12 = 1.

Then, the NC parameter Θ′ and the size

L′ = ǫ n (2.11)

of the dual torus are determined by those of the original torus as

Θ′ =
aΘ + b

p̃ + q̃Θ
, (2.12)

L′ = L (p̃ + Θq̃) . (2.13)

The configuration space of an adjoint field is given by the representation space of the

operators Ẑ ′
µ and Γ̂′

µ satisfying the algebra (2.7)–(2.9).

From the above construction of the singlet and adjoint fields, it follows that the con-

figuration space of a fundamental field is given by the representation space of the operators

Ẑ ′
µ and Γ̂′

µ acting from the left, and the operators Ẑµ and Γ̂µ acting from the right.

Once the configuration space is characterized algebraically as above, we can represent

the configurations by finite matrices by finding appropriate representations of the coordi-

nate and shift operators. Since the operators Ẑµ and Γ̂µ are defined on the original torus,

which is discretized into an N ×N lattice, it is natural to represent them by N ×N matri-

ces2 from the counting of degrees of freedom. Then the algebra (2.1)–(2.3) can be satisfied

2Their explicit form is given in eq. (5.6) of ref. [10].
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if the NC parameters are chosen as

Θ =
2r

N
, (2.14)

ǫ2c12 = −2π
s

N
, (2.15)

where the integers r and s satisfy the Diophantine equation

2rs − kN = −1 (2.16)

for some integer k. Similarly, since the operators Ẑ ′
µ and Γ̂′

µ are defined on the dual torus,

which is discretized into an n × n lattice and endowed with the U(p0) gauge group, it is

natural to represent these operators by np0 × np0 matrices as

Ẑ ′
µ = Z(n)

µ ⊗ 11p0 , (2.17)

Γ̂′
µ = Γ(n)

µ ⊗ 11p0 . (2.18)

The n× n matrices3 Z
(n)
µ and Γ

(n)
µ can satisfy the same algebra as (2.7)–(2.9) if we choose

the NC parameters as

Θ′ =
j

n
, (2.19)

ǫ2(c12 + f12) = 2π
m

n
, (2.20)

where the integers j and m satisfy the Diophantine equation

mj + nk′ = 1 (2.21)

for some integer k′. The integers m and n of the dual torus are determined by those of the

original torus, N , r, s, k, with the input of the integers p and q as

m = −sp̃ − kq̃ , n = Np̃ + 2rq̃ . (2.22)

The other integers j and k′ of the dual torus can be determined by eq. (2.21).

The action for the gauge field is given by the twisted Eguchi-Kawai model [16, 17]

STEK = −nβ′
∑

µ6=ν

Z ′
νµtr

(

Vµ Vν V †
µ V †

ν

)

+ 2β′n2p0 , (2.23)

where

Vµ = eǫD̂µ (2.24)

are U(np0) matrices with D̂µ being the covariant derivative operator for the full gauge field

including both the background and fluctuations. The Zn factor Z ′
νµ = (Z ′

µν)
∗ represents

the twist, which is given by

Z ′
12 = exp

(

−2πi
m

n

)

. (2.25)

3Their explicit form is given in eq. (5.15) of ref. [10].
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The coefficient β′ can be interpreted as the lattice coupling constant of the dual theory,

which is related to that of the original theory β as

β =
1

p̃

( n

N

)2
β′ . (2.26)

The action (2.23) takes the minimum value and vanishes when Vµ = Γ̂′
µ ≡ eǫD̂

(0)
µ , which

corresponds to the background gauge field. One can also show that the action (2.23) has

the correct continuum limit classically.

Actions for fundamental matters can be given by using the covariant forward and

backward difference operators ∇µ, ∇∗
µ defined by

∇µΨ =
1

ǫ

(

Vµ Ψ Γ̂†
µ − Ψ

)

,

∇∗
µΨ =

1

ǫ

(

Ψ − V †
µ Ψ Γ̂µ

)

. (2.27)

Here Vµ is the U(np0) matrix introduced by (2.24), and Γ̂µ = e ǫ∂̂µ is the shift operator

represented by an N × N matrix satisfying (2.3) and (2.15). The fundamental matter

field Ψ is represented by np0 × N rectangular matrices. One can define an overlap Dirac

operator [18] as4

D =
1

ǫ
(1 − γ5γ̂5) , (2.28)

where γ5 is the ordinary chirality operator and γ̂5 is the modified one defined by

γ̂5 =
H√
H2

, (2.29)

H = γ5 (1 − ǫDW) (2.30)

in terms of the Wilson-Dirac operator

DW =
1

2

2
∑

µ=1

{

γµ

(

∇∗
µ + ∇µ

)

− ǫ∇∗
µ∇µ

}

. (2.31)

The Dirac operator (2.28) satisfies the Ginsparg-Wilson relation [22]

γ5D + Dγ̂5 = 0 , (2.32)

which guarantees the exact chiral symmetry [23]. Thanks to the index theorem [24], one

can classify gauge configurations into topological sectors using the index of D given by

ν =
1

2
Tr (γ5 + γ̂5) =

1

2
Tr γ̂5 , (2.33)

where the trace Tr is taken in the configuration space of the matter field.

4The overlap Dirac operator was introduced on a periodic NC torus in ref. [19], and the correct form

of the axial anomaly has been reproduced in the continuum limit [20]. A prescription to define an analog

of the overlap Dirac operator and its index (2.33) on general NC manifolds including the fuzzy sphere has

been proposed in ref. [21].
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The topological charge can also be defined as5

Q =
1

4πi
N

∑

µ6=ν

ǫµνZνµtr
(

Vµ Vν V †
µ V †

ν

)

(2.34)

with the ZN factor Zνµ = (Zµν)∗ given by

Z12 = exp
(

2πi
s

N

)

. (2.35)

For Vµ = Γ̂′
µ, which gives the minimum of the gauge action (2.23), the topological charge

becomes Q = q as expected. One can also show that Q has the correct continuum limit

classically. Note, however, that Q does not take integer values for generic configurations

unlike the index ν.

3 Monte Carlo results

In this section we present our results for the probability distribution of the index (2.33)

and the topological charge (2.34) obtained by simulating the model (2.23). Details of the

simulation are described in ref. [27].

First we comment on the parameters we have chosen. For simplicity, we consider U(1)

gauge group p = 1, which also implies p0 = 1 and hence p̃ = 1, q̃ = q. As for the integers

r and k appearing in eq. (2.16), we choose r = −1, k = −1 (and hence s = N+1
2 ) following

essentially the choice in the previous works [10, 25, 27, 28]. This implies, in particular,

that the NC parameter (2.14) is given by Θ = −2/N , where N represents the size of the

torus (2.4) in units of the lattice spacing. Note that the size n of the matrices Vµ and the

integer m, which labels the twist (2.25) in the gauge action (2.23), are given by n = N −2q

and m = −(n + 1)/2, respectively, due to (2.22).

We perform Monte Carlo simulations for various values of q. We measure the index ν

and the topological charge Q for each configuration generated by Monte Carlo simulation,

and obtain the probability distribution P (ν) and P (Q).

Let us present our results for the index ν given by (2.33). In figure 1 we plot the

distribution of the index for q = −2,−1, 0, 1, 2. (The results for q = 0 are already given

in ref. [28].) On the left we show how the probability distribution of ν changes as we

increase β′ for n = 15. (We assume the normalization
∑

ν P (ν) = 1.) We find that the

probability for ν 6= q decreases rapidly, and the probability for ν = q approaches unity. On

the right we plot the probability distribution P (ν) for various n at β′ = 0.55. (Note that

the value of β′ we have chosen lies in the region above the critical point β′ = βcr ≡ 1/2

of the Gross-Witten phase transition [29], which is relevant for the continuum limit.) We

find that the distribution approaches the Kronecker delta δν,q not only for increasing β′

but also for increasing n.

5This reduces to the one in ref. [25] for q = 0. An analogous definition was also used in ref. [26]. Their

topological charge QGS is related to ours by Q = −QGS/2π.
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In order to take the continuum limit, we have to send n and β′ to infinity simultaneously

fixing the ratio n/β′ [27].6 It is clear from the above results that the distribution P (ν)

approaches δν,q very rapidly in that limit. This conclusion provides a physical interpretation

to the results of the instanton calculus in the continuum theory [30], where the partition

function has been written as a sum over all the instanton configurations with a certain

constraint related to the magnetic flux q.

In the commutative case, analytical and numerical studies show that the distribution

of the topological charge is gaussian with a finite width, and the width diverges in the

infinite-volume limit [11, 12]. Thus the situation in the NC case differs drastically from the

commutative case. This can be interpreted as a kind of smoothing effects of NC geometry

due to the existence of all higher derivative terms in the star product as we discussed in

the Introduction. To substantiate this argument, we plot in figure 2 the average value of

the action S̄(ν) in each topological sector. We find that the result is almost independent

of ν except for ν = q, where we indeed observe a dip.

Next we present our results for the topological charge Q defined by (2.34). In figure 3

the probability distribution of Q is plotted for q = −2,−1, 0, 1, 2, showing how it changes

as we take the continuum limit,7 i.e., sending n and β′ to infinity with fixed n/β′. Here

we fix it to n/β′ = 32 following ref. [27]. (We assume the normalization
∫

dQ P (Q) = 1.)

We find that the distribution is a gaussian peaked slightly away from the integer q. From

figure 4, however, we find in the continuum limit that the deviation 〈Q〉 − q vanishes as

1/n, and the width of the distribution vanishes as 1/
√

n. Thus we have confirmed that

the distribution of the topological charge becomes a delta function peaked at q. This is

consistent with the index theorem [32, 33], which asserts that the index ν agrees with the

topological charge Q for configurations that survive in the continuum limit.

Let us recall that the definition of the topological charge we used is given by eq. (2.34),

which may be viewed as a naive discretization of the corresponding expression in the con-

tinuum. In the commutative space, one can use the geometrical construction [34] to define

an integer topological charge for any lattice configuration. It takes a particularly simple

form in the 2d U(1) case, which is used in ref. [11, 12]. In 4d theories, on the other hand,

one usually uses a naively defined topological charge, but one can obtain a distribution

peaked at integer values by using some techniques like cooling or renormalization. (See

ref. [35], for instance.) Note that here we are able to obtain a distribution peaked at an in-

teger value even with the naive definition of the topological charge without any techniques.

This might also be due to smoothing effects of NC geometry. Let us also mention that the

computational effort for calculating Q is of order O(n3), whereas that for calculating the

index ν is of order O(n6). Therefore, Q might be of some use when one tries to extend the

present work to higher dimensions.

6The “lattice spacing” ǫ has to be sent to zero in such a way that the dimensionful coupling constant

g2 = 1
ǫ2β

is fixed. We also require the dimensionful non-commutativity parameter ΘL2
∼ Nǫ2 to be finite.

These two conditions imply fixing the ratio N/β ∼ n/β′ in the continuum limit. The size of the torus

L = Nǫ diverges as
√

N ∼
√

n in that limit.
7In ref. [31], growing of the peak is observed as one increases β′ with fixed n for q = 0.
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Figure 2. The average value of the action is plotted against the index ν for various β′ at n = 15

(left) and for various n at β′ = 0.55 (right). From the top to the bottom, we present the results for

q = −2,−1, 0, 1, 2.

– 9 –



J
H
E
P
0
9
(
2
0
0
9
)
0
8
4

 0

 0.5

 1

 1.5

 2

 2.5

 3

-4 -3 -2 -1  0  1  2  3  4

P
(Q

)

Q

q=-2

n= 35
n= 85

n=395

 0

 0.5

 1

 1.5

 2

 2.5

 3

-4 -3 -2 -1  0  1  2  3  4

P
(Q

)

Q

q=-1

n= 35
n= 85

n=395

 0

 0.5

 1

 1.5

 2

 2.5

 3

-4 -3 -2 -1  0  1  2  3  4

P
(Q

)

Q

q=0

n= 35
n= 85

n=395

 0

 0.5

 1

 1.5

 2

 2.5

 3

-4 -3 -2 -1  0  1  2  3  4

P
(Q

)

Q

q=1

n= 35
n= 85

n=395

 0

 0.5

 1

 1.5

 2

 2.5

 3

-4 -3 -2 -1  0  1  2  3  4

P
(Q

)

Q

q=2

n= 35
n= 85

n=395

Figure 3. The probability distribution of the topological charge Q is plotted for q = −2,−1, 0, 1, 2

with n = 35, 85, 395 and fixed n/β′ = 32.
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Figure 4. (Left) The discrepancy of the vacuum expectation value of the topological charge Q

from q is plotted against 1/n . (Right) The width of the probability distribution of Q is plotted

against 1/
√

n.

4 Summary and discussions

In this paper, we have studied the probability distribution of the index ν and the topo-

logical charge Q in the finite-matrix formulation of 2d U(1) NC gauge theory with various

boundary conditions. Our results suggest that a single topological sector, which is dictated

by the boundary condition specified by the integer q, dominates in the continuum limit.8

This is in sharp contrast to the situation in the ordinary lattice gauge theory, where all the

topological sectors appear from a single theory. This striking difference can be interpreted

as a kind of smoothing effects of NC geometry.

Let us discuss possible implications of our results to the real world. Considering

that our space-(time) naturally becomes non-commutative, for instance, in matrix model

formulations [1, 2] of string theory, we may expect that NC geometry is realized in nature

in various ways, which we discuss in what follows separately.

First we consider the possibility that NC geometry is realized in the extra dimen-

sions [13, 14]. There is a well-known scenario in string theory that the number of gen-

erations, for instance, is determined by the index in the extra dimensions. However, its

distribution may have a non-vanishing width in general due to dynamical fluctuations of

the gauge fields in the extra dimensions, which causes a serious problem in this scenario.

If the extra-dimensional space is non-commutative, the index takes a specific value once

the boundary condition is fixed somehow, even if the dynamical fluctuations are taken

into account.

We can also consider that our 4d space-time has certain non-commutativity. In this

case, non-locality may cause some problems such as the violation of causality, renormal-

8In the literature, the possibility of summing over boundary conditions is sometimes discussed. In this

case, the relative weight should be fixed by some underlying principle. For example, in the random matrix

theory for QCD, the relative weight is fixed by the guiding principle that one should recover QCD [36].

Alternatively, one can introduce the Higgs sector in the NC gauge theory [37] (See [38] for a related work.).

In this case, the winding number of the Higgs field plays the role of the twisted boundary condition, and

all the topological sectors appear from a single theory.
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izability and the CPT theorem. It also induces the UV/IR mixing effects, which make it

difficult to think of phenomenologically viable models. From the viewpoint of string theory,

it is a big challenge to understand how one can get rid of all these problems arising from

non-locality. (See ref. [39] for a different way to introduce NC geometry without inducing

the UV/IR mixing effects.) Let us assume here that they are resolved somehow, and dis-

cuss what would be other consequences of the NC geometry. In particular, we speculate on

how the new properties we found in the present paper may play roles in various problems

related to topological aspects of gauge theories.

Let us consider the baryon number asymmetry of the universe. In the electroweak

theory, the baryon number conservation is violated by the chiral anomaly through instanton

effects. In order to generate net baryon number asymmetry, one usually introduces some

bias caused, for instance, by a bubble wall sweeping over the universe during the electroweak

phase transition. Our result suggests that NC geometry with a twisted boundary condition

may provide a simple and direct source for the net asymmetry.

We also speculate that the strong CP problem may be solved by NC geometry. From

the experimental bound on the electric dipole moment, the parameter θ̄ of the QCD vacuum

(including the phase of the fermion mass) must be less than 10−9, which needs some

explanation. If the space-time is given by a NC geometry, a single topological sector with

a specific value of Q dominates, and the eiθ̄Q simply factors out of the path integral.

Hence the physics do not depend on the parameter θ̄. This explanation is reminiscent of

the scenario [40] that the long-range interaction between instantons and anti-instantons

washes out the local topological structure, which makes the topology of the gauge field

determined only by the boundary condition.

We hope that some of the above speculations can be pursued further by investigating

the relevance of matrix model formulations of string theory to our world, and by studying

NC gauge theories in four dimensions by Monte Carlo simulations [41].
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